首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Development and application of mass spectrometric methods for the analysis of progranulin N-glycosylation
Authors:Kriangsak Songsrirote  Zhi Li  David Ashford  Andrew Bateman  Jane Thomas-Oates
Institution:1. Department of Chemistry, and Centre of Excellence in Mass Spectrometry, University of York, York, UK;2. Endocrine Research Laboratories, Department of Medicine, Royal Victoria Hospital, McGill University, Montreal, Quebec, Canada;3. Department of Biology, and Centre of Excellence in Mass Spectrometry, University of York, York, UK
Abstract:PGRN is a modular protein with 7 1/2 repeats of the granulin domain separated by short spacer sequences. Elevated expression of PGRN is associated with cancer growth, while mutations of PGRN cause frontotemporal lobar degeneration (FTLD), an early onset form of dementia. PGRN is a glycoprotein, containing five N-glycosylation consensus sequons, three of which fall within granulin domains. A method tailored to enable detailed analysis of the PGRN oligosaccharides and glycopeptides has been developed. The approach involves in-gel deglycosylation using peptide-N-glycosidase F (PNGase F) followed by permethylation of the released oligosaccharides. Permethylation was applied for rapid sample clean-up and to improve sensitivity of MS detection and mass spectrometric fragmentation. Reversed-phase monolithic LC–ESI–MS/MS was used for analysis of permethylated oligosaccharides, enabling structural characterization of released N-linked glycans in one chromatographic run. In-gel tryptic digestion was further applied to the gel pieces containing deglycosylated protein, for N-glycosylation site determination. In addition, glycopeptides were produced using in-solution pronase digestion to identify species of N-glycan attached at particular sites. The method developed was applied to progranulin (PGRN) to characterize the structures of the released glycans and to identify the sites of glycosylation. Glycosylation of four out of five potential PGRN N-glycosylation consensus sites was demonstrated (the final one remains undetermined), with one of the four observed to be partially occupied. Two of the observed glycosylation sites occur within granulin domains, which may have important implications for understanding the structural basis of PGRN action.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号