首页 | 本学科首页   官方微博 | 高级检索  
     


In vitro metabolism of 3-t-butyl-4-hydroxyanisole and its irreversible binding to proteins
Authors:A Rahimtula
Affiliation:Biochemistry Department, Memorial University, St. John''s, Newfoundland A1B 3X9 Canada
Abstract:A method for the preparation of methyl-labelled 3-t-butyl-4-hydroxyanisole (BHA) is described. Metabolism of [14C]BHA using four different enzyme systems (liver microsomes + NADPH; liver microsomes + cumene hydroperoxide (CHP); sheep seminal vesicle (SSV) microsomes (as a source of prostaglandin synthetase) + arachidonic acid (AA); horseradish peroxidase (HRP) + hydrogen peroxide) was investigated. In all systems, BHA was oxidized to a variety of products including formaldehyde, a dimer di-BHA, polar and water soluble metabolites as well as a reactive intermediate(s) that binds irreversibly to proteins. With liver microsomes and NADPH, phenobarbital (PB) induction gave increased yields of all products while 3-methylcholanthrene (MC) induction specifically increased protein binding but decreased other metabolite formation. BHA addition effectively discharged the activated oxygen complex of cytochrome P-450 (liver microsomes) as well as Comp. I and Comp. II of HRP suggesting that it is a good one electron peroxidase donor. BHA addition also increased the net rate of NADPH oxidation in the presence of liver microsomes suggesting uncoupling. It is proposed that in all system investigated BHA is oxidized predominantly via a one electron oxidation process to yield first the BHA free radical which then dimerizes, forms more products or binds to proteins.
Keywords:AA  arachidonic acid  BHA  CHP  cumene hydroperoxide  HRP  horseradish peroxidase  MC  3-methylcholanthrene  PB  phenobarbital  SSV  sheep seminal vesicle  TLC  thin layer chromatorgaphy
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号