首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Influence of sorbitol on protein production and glycosylation and cell wall formation in Trichoderma reesei
Authors:Górka-Nie? Wioletta  Perlińska-Lenart Urszula  Zembek Patrycja  Palamarczyk Gra?yna  Kruszewska Joanna S
Institution:Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
Abstract:Sorbitol is often used at 1 mol/liter as an osmotic stabilizer for cultivation of fungi with a fragile cell wall phenotype. On the other hand, at this concentration sorbitol causes an osmotic stress in fungal cells resulting in intensive production of intracellular glycerol. The highly increased consumption of glucose for glycerol synthesis may lead to changes in processes requiring carbohydrate residues. This study provides new information on the consequences of osmotic stress to the cell wall composition, protein production and glycosylation, and cell morphology of Trichoderma reesei. We observed that high osmolarity conditions enhanced biomass production and strongly limited synthesis of cell wall glucans and chitin. Moreover, in these conditions the amount of secreted protein decreased nearly ten-fold and expression of cbh1 and cbh2 genes coding for cellobiohydrolase I and cellobiohydrolase II, the main secretory proteins in T. reesei, was inhibited resulting in a lack of the proteins in the cell and cultivation medium. The activity of DPM synthase, enzyme engaged in both N- and O-glycosylation pathways, was reduced two-fold, suggesting an overall inhibition of protein glycosylation. However, the two modes of glycosylation were affected divergently: O-glycosylation of secreted proteins decreased in the early stages of growth while N-glycosylation significantly increased in the stationary phase.
Keywords:Cell wall  Glycosylation  High osmolarity  Protein secretion  Trichoderma
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号