首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pep7p provides a novel protein that functions in vesicle-mediated transport between the yeast Golgi and endosome.
Authors:G C Webb  J Zhang  S J Garlow  A Wesp  H Riezman  and E W Jones
Abstract:Saccharomyces cerevisiae pep7 mutants are defective in transport of soluble vacuolar hydrolases to the lysosome-like vacuole. PEP7 is a nonessential gene that encodes a hydrophilic protein of 515 amino acids. A cysteine-rich tripartite motif in the N-terminal half of the polypeptide shows striking similarity to sequences found in many other eukaryotic proteins. Several of these proteins are thought to function in the vacuolar/lysosomal pathway. Mutations that change highly conserved cysteine residues in this motif lead to a loss of Pep7p function. Kinetic studies demonstrate that Pep7p function is required for the transport of the Golgi-precursors of the soluble hydrolases carboxypeptidase Y, proteinase A, and proteinase B to the endosome. Integral membrane hydrolase alkaline phosphatase is transported to the vacuole by a parallel intracellular pathway that does not require Pep7p function. pep7 mutants accumulate a 40-60-nm vesicle population, suggesting that Pep7p functions in a vesicle consumption step in vesicle-mediated transport of soluble hydrolases to the endosome. Whereas pep7 mutants demonstrate no defects in endocytic uptake at the plasma membrane, the mutants demonstrate defects in transport of receptor-mediated macromolecules through the endocytic pathway. Localization studies indicate that Pep7p is found both as a soluble cytoplasmic protein and associated with particulate fractions. We conclude that Pep7p functions as a novel regulator of vesicle docking and/or fusion at the endosome.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号