首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Determination of the enantiomerization energy barrier of some 3-hydroxy-1,4-benzodiazepine drugs by supercritical fluid chromatography
Authors:Oswald Peter  Desmet Koen  Sandra Pat  Krupcík Jan  Májek Pavol  Armstrong Daniel W
Institution:Department of Chemistry, Hacettepe University. Ankara, Turkey.
Abstract:In this study, nucleotide adsorption-desorption behaviour of boronic acid-carrying uniform, porous particles was investigated. The particles were produced by a "multi-step microsuspension polymerization" in the form of poly(styrene-vinylphenyl boronic acid-divinylbenzene) terpolymer. In the first step of the production method, uniform polystyrene latex particles (6.2 microm in size) were obtained by dispersion polymerization. These particles were first swollen by a low molecular mass organic agent (i.e. dibutylphthalate, DBP) and then by a monomer mixture including styrene (S), 4-vinylphenyl boronic acid (VPBA) and divinylbenzene (DVB). The particle uniformity was protected in both swelling stages by adjusting DBP/polystyrene latex and monomer mixture/polystyrene latex ratios. Polymerization of the monomer mixture in the swollen seed particles provided boronic acid-carrying uniform, porous particles 11-12 microm in size. To have uniform particles with different porosities and boronic acid contents, the feed concentration of boronic acid-carrying monomer and the monomer/seed latex ratio were changed. The particles were tried as sorbent for the adsorption of a model nucleotide (i.e., beta-nicotinamide adenine dinucleotide, beta-NAD). In the beta-NAD adsorption experiments, the maximum equilibrium adsorption was obtained at pH 8.5 which was very close to pKa of boronic acid. The incorporation of boronic acid functionality provided a significant increase in the beta-NAD adsorption. In contrast to plain poly(styrene-co-divinylbenzene) particles, four-fold higher beta-NAD adsorption was obtained with the boronic acid functionalized particles. Beta-NAD was desorbed from the particles with the yields higher than 90% by weight.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号