首页 | 本学科首页   官方微博 | 高级检索  
     


Xylem dysfunction during winter and recovery of hydraulic conductivity in diffuse-porous and ring-porous trees
Authors:U. Hacke  J. J. Sauter
Affiliation:(1) Botanisches Institut der Christian-Albrechts-Universität zu Kiel, Ofshausenstrasse 40, D-24098 Kiel, Germany
Abstract:Xylem embolism in winter and spring as well as the occurrence of positive xylem pressure were monitored in several diffuse-porous and one ring-porous tree species (Fraxinus excelsior). In Acer pseudoplatanus and Betula pendula embolism reversal was associated with positive (above-atmospheric) xylem pressures that frequently occurred during a 2-month period prior to leaf expansion. In Acer high stem pressures were occasionally triggered on sunny days after a night frost. The other species investigated showed no positive xylem pressure during the monitoring period in 1995. Populus balsamifera exhibited a complete embolism reversal in 1994, but, like Fagus sylvatica, recovery was slow and incomplete in 1995. Fraxinus did not refill embolized vessels, but relied entirely on the production of new earlywood conduits in May. Populus × canadensis Moench ldquorobustardquo did not recover from embolism during the monitoring period. Under a simulated root pressure of 20 kPa however, excised branches of Populus × canadensis restored maximum hydraulic conductance within 2 days, illustrating the great influence of even small positive pressures on cnductivity recovery in spring. In the absence of positive pressure there was no substantial refilling of embolized vessels within a rehydration period of 9 days.
Keywords:Embolism  Freezing stress  Water relations  Root pressure  Xylem
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号