首页 | 本学科首页   官方微博 | 高级检索  
     


Chronic cardiac resynchronization therapy and reverse ventricular remodeling in a model of nonischemic cardiomyopathy
Authors:Nishijima Yoshinori  Sridhar Arun  Viatchenko-Karpinski Serge  Shaw Courtney  Bonagura John D  Abraham William T  Joshi Mandar S  Bauer John Anthony  Hamlin Robert L  Györke Sandor  Feldman David S  Carnes Cynthia A
Affiliation:Department of Veterinary Biosciences, United States.
Abstract:While cardiac resynchronization therapy (CRT) has been shown to reduce morbidity and mortality in heart failure (HF) patients, the fundamental mechanisms for the efficacy of CRT are poorly understood. The lack of understanding of these basic mechanisms represents a significant barrier to our understanding of the pathogenesis of HF and potential recovery mechanisms. Our purpose was to determine cellular mechanisms for the observed improvement in chronic HF after CRT. We used a canine model of chronic nonischemic cardiomyopathy. After 15 months, dogs were randomized to continued RV tachypacing (untreated HF) or CRT for an additional 9 months. Six minute walk tests, echocardiograms, and electrocardiograms were done to assess the functional response to therapy. Left ventricular (LV) midmyocardial myocytes were isolated to study electrophysiology and intracellular calcium regulation. Compared to untreated HF, CRT improved HF-induced increases in LV volumes, diameters and mass (p<0.05). CRT reversed HF-induced prolongations in LV myocyte repolarization (p<0.05) and normalized HF-induced depolarization (p<0.03) of the resting membrane potential. CRT improved HF-induced reductions in calcium (p<0.05). CRT did not attenuate the HF-induced increases in LV interstitial fibrosis. Using a translational approach in a chronic HF model, CRT significantly improved LV structure; this was accompanied by improved LV myocyte electrophysiology and calcium regulation. The beneficial effects of CRT may be attributable, in part, to improved LV myocyte function.
Keywords:Heart failure   Cardiac resynchronization   Action potential   Calcium
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号