首页 | 本学科首页   官方微博 | 高级检索  
     


Multiple mechanisms of transmitter release evoked by "pathologically" elevated extracellular [K+]: involvement of transporter reversal and mitochondrial calcium
Authors:Raiteri Luca  Stigliani Sara  Zedda Luca  Raiteri Maurizio  Bonanno Giambattista
Affiliation:Department of Experimental Medicine, Pharmacology and Toxicology Section, University of Genova, Genova, Italy.
Abstract:The release of [3H]GABA evoked by depolarization with various concentrations of KCl was studied using superfused rat cerebrocortex synaptosomes. Elevating [K+] produced release of [3H]GABA over basal which was increasingly less dependent on external Ca2+ but more sensitive to the GABA transporter blocker SKF 100330 A. Accordingly, the sensitivity to clostridial toxins of the depolarization-evoked amino acid release was inversely correlated to the concentration of KCl used. However, at 50 mM K+, one-third of the stimulated release remained which was external Ca2+-independent but insensitive to SKF 100330 A. This release was prevented by BAPTA, thapsigargin or dantrolene; it also was inhibited by blocking in mitochondria the ATP production with oligomycin, the H+-dependent Ca2+ uniporter with RU 360, the Na+/Ca2+ exchanger with CGP 37157 or by lowering extraterminal [Na+]. In fluorescence experiments with fura-2/AM, 50 mM K+ (in Ca2+ free medium) caused elevation of cytosolic [Ca2+] that was sensitive to thapsigargin or CGP 37157; these compounds produced partially additive effects. When exocytosis was monitored with the fluorescent dye acridine orange, the fluorescence elicited by 50 mM K+ was sensitive to thapsigargin or CGP 37157, which produced additive effects, and to low-Na+ media. To conclude, extracellular K+ concentrations occurring in the CNS in certain pathological conditions provoke GABA release by mechanisms different from classical exocytosis. These include carrier-mediated release and internal Ca2+-dependent exocytosis; in the latter, mitochondrial Ca2+ seems to play a primary role.
Keywords:Ca2+ pools    carrier-mediated release    mitochondrial Na+    Ca2+ exchanger    GABA release    K+ depolarization    exocytosis
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号