首页 | 本学科首页   官方微博 | 高级检索  
     


Ontogeny of hypoxic modulation of cardiac performance and its allometry in the African clawed frog Xenopus laevis
Authors:T.-C. Francis Pan  Warren W. Burggren
Affiliation:1. Developmental Integrative Biology Research Cluster, Department of Biological Sciences, University of North Texas, Denton, TX, 76203-5017, USA
2. Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, AHF 210, Los Angeles, CA, 90089, USA
Abstract:The ontogeny of cardiac hypoxic responses, and how such responses may be modified by rearing environment, are poorly understood in amphibians. In this study, cardiac performance was investigated in Xenopus laevis from 2 to 25 days post-fertilization (dpf). Larvae were reared under either normoxia or moderate hypoxia (PO2 = 110 mmHg), and each population was assessed in both normoxia and acute hypoxia. Heart rate (f h ) of normoxic-reared larvae exhibited an early increase from 77 ± 1 beats min?1 at 2 dpf to 153 ± 1 beats min?1 at 4 dpf, followed by gradual decreases to 123 ± 3 beats min?1 at 25 dpf. Stroke volume (SV), 6 ± 1 nl, and cardiac output (CO), 0.8 ± 0.1 μl min?1, at 5 dpf both increased by more than 40-fold to 25 dpf with rapid larval growth (~30-fold increase in body mass). When exposed to acute hypoxia, normoxic-reared larvae increased f h and CO between 5 and 25 dpf. Increased SV in acute hypoxia, produced by increased end-diastolic volume (EDV), only occurred before 10 dpf. Hypoxic-reared larvae showed decreased acute hypoxic responses of EDV, SV and CO at 7 and 10 dpf. Over the period of 2–25 dpf, cardiac scaling with mass showed scaling coefficients of ?0.04 (f h ), 1.23 (SV) and 1.19 (CO), contrary to the cardiac scaling relationships described in birds and mammals. In addition, f h scaling in hypoxic-reared larvae was altered to a shallower slope of ?0.01. Collectively, these results indicate that acute cardiac hypoxic responses develop before 5 dpf. Chronic hypoxia at a moderate level can not only modulate this cardiac reflex, but also changes cardiac scaling relationship with mass.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号