Abstract: | Chemical analysis of the ferredoxin-dependent native form (Mr = 85,000) of spinach nitrite reductase has demonstrated a siroheme content that approaches 2 mol of siroheme/mol of enzyme. A widely studied modified (Mr = 61,000) form of nitrite reductase, that has lost much of the native enzyme's ability to use ferredoxin as an electron donor, contains approximately 1 mol of siroheme/mol of enzyme. Quantitation of the high spin ferri-siroheme EPR signals and of nitrite-binding sites of the two preparations confirmed that the native enzyme's siroheme content is approximately twice that of the modified enzyme. Plots of nitrite and cyanide binding to the native enzyme versus ligand concentration are sigmoidal, with Hill coefficients of 1.6-1.8 and 2.3-2.8, respectively. Plots of enzyme activity versus nitrite concentration for the native enzyme are sigmoidal with a Hill coefficient of 2.4. Cyanide inhibition of enzymatic activity was shown to be not competitive. Addition of cyanide to the native enzyme resulted in a diminution of the high spin ferri-siroheme EPR signal and produced EPR signals with g values of 2.71, 2.33, and 1.49 due to low spin ferri-siroheme. |