首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Relationship of hepatic cholate transport to regulation of intracellular pH and potassium.
Authors:C M Veith  T Thalhammer  F X Felberbauer  J Graf
Institution:Department of General and Experimental Pathology, University of Vienna, Austria.
Abstract:Modulation of hepatic cholate transport by transmembrane pH-gradients and during interferences with the homeostatic regulation of intracellular pH and K+ was studied in the isolated perfused rat liver. Within the concentration range studied uptake into the liver was saturable and appeared to be associated with release of OH- and uptake of K+. Perfusate acidification ineffectually stimulated uptake. Application of NH4Cl caused intracellular alkalinization, release of K+ and stimulation of cholate uptake, withdrawal of NH4Cl resulted in intracellular acidification, regain of K+ and inhibition of cholate uptake. Inhibition of Na+/H(+)-exchange with amiloride reduced basal release of acid equivalents into the perfusate, initiated K(+)-release, and inhibited both, control cholate uptake and its recovery following intracellular acidification. K(+)-free perfusion caused K(+)-release and inhibited cholate uptake. K(+)-readmission resulted in brisk K(+)-uptake and recovery of cholate transport. Both effects were inhibited by amiloride. Interference with cholate transport through modulation of pH homeostasis by diisothiocyanostilbenedisulfonate (DIDS) could not be demonstrated because DIDS affected bile acid transport directly. Biliary bile acid secretion was stimulated by intracellular alkalinization and by activation of K(+)-transport. Uncoupling of the mutual interference between pH-dependent cholate uptake and K(+)-transport by amiloride indicates tertiary active transport of cholate. In this, Na+/K(+)-ATPase provides the transmembrane Na(+)-gradient to sustain Na+/H(+)-exchange which maintains the transmembrane pH-gradient and thus supports cholate uptake. Effects of canalicular bile acid secretion are consistent with a saturable, electrogenic transport.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号