首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dual-source mass spectrometer with MALDI-LIT-ESI configuration
Authors:Smith Scott A  Blake Thomas A  Ifa Demian R  Cooks R Graham  Ouyang Zheng
Institution:Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
Abstract:A novel linear ion trap (LIT) mass spectrometer with dual matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) ionization sources has been built in the MALDI-LIT-ESI configuration. The design features two independent ion source/ion optical channels connected to opposite ends of a single mass analyzer. The instrument consists of a commercial MALDI-LIT instrument modified by the addition of a home-built vacuum manifold, ion optical system, control electronics, and programming necessary to couple an atmospheric pressure interface to the commercial instrument. In addition to the added ESI functionality, the capabilities of the system also include simultaneous dual-channel ion introduction and analysis and high-duty cycle electronic switching (<1 s) between ion channels. Analytical and ion chemical applications of the dual-source system are explored. One analytical application is the enhanced protein sequence coverage achieved when using both ESI and MALDI to examine a tryptic digest of a six-protein mixture. The differences in the efficiency with which peptides in a mixture are ionized by the two methods give improved sequence coverage when both are applied. Other analytical applications include the use of the ions from one source as intensity or mass standards for the analyte ions from the other. An ion chemistry application involves the use of energy-resolved tandem mass spectrometry (MS/MS) to seek evidence for the generation of isomeric ions from a particular compound using the two ionization methods. A high level of agreement was achieved between the MS/MS spectra recorded under a variety of conditions after ESI and MALDI ionization; this provides evidence of the reproducibility and internal consistency of data from the dual source instrument. However, each of the peptides examined generated identical populations of structures in the two ionization methods under our conditions which are interpreted as involving slow cooling into the most stable minimum on the potential energy surface.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号