首页 | 本学科首页   官方微博 | 高级检索  
     


Bcl2 negatively regulates DNA double-strand-break repair through a nonhomologous end-joining pathway
Authors:Wang Qinhong  Gao Fengqin  May W Stratford  Zhang Yangde  Flagg Tammy  Deng Xingming
Affiliation:UF Shands Cancer Center, University of Florida, Gainesville, FL 32610-3633, USA.
Abstract:Bcl2 can enhance susceptibility to carcinogenesis, but the mechanism(s) remains fragmentary. Here we discovered that Bcl2 suppresses DNA double-strand-break (DSB) repair and V(D)J recombination by downregulating Ku DNA binding activity, which is associated with increased genetic instability. Exposure of cells to ionizing radiation enhances Bcl2 expression in the nucleus, which interacts with both Ku70 and Ku86 via its BH1 and BH4 domains. Removal of the BH1 or BH4 domain abrogates the inhibitory effect of Bcl2 on Ku DNA binding, DNA-PK, and DNA end-joining activities, which results in the failure of Bcl2 to block DSB repair as well as V(D)J recombination. Intriguingly, Bcl2 directly disrupts the Ku/DNA-PKcs complex in vivo and in vitro. Thus, Bcl2 suppression of the general DSB repair and V(D)J recombination may occur in a mechanism by inhibiting the nonhomologous end-joining pathway, which may lead to an accumulation of DNA damage and genetic instability.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号