首页 | 本学科首页   官方微博 | 高级检索  
     


Nitrogen source and mineral optimization enhance d-xylose conversion to ethanol by the yeast Pichia stipitis NRRL Y-7124
Authors:Patricia J. Slininger  Bruce S. Dien  Steven W. Gorsich  Zonglin L. Liu
Affiliation:(1) U. S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University Street, Peoria, IL 61604, USA
Abstract:Nutrition-based strategies to optimize xylose to ethanol conversion by Pichia stipitis were identified in growing and stationary-phase cultures provided with a defined medium varied in nitrogen, vitamin, purine/pyrimidine, and mineral content via full or partial factorial designs. It is surprising to note that stationary-phase cultures were unable to ferment xylose (or glucose) to ethanol without the addition of a nitrogen source, such as amino acids. Ethanol accumulation increased with arginine, alanine, aspartic acid, glutamic acid, glycine, histidine, leucine, and tyrosine, but declined with isoleucine. Ethanol production from 150 g/l xylose was maximized (61±9 g/l) by providing C:N in the vicinity of ∼57–126:1 and optimizing the combination of urea and amino acids to supply 40–80 % nitrogen from urea and 60–20 % from amino acids (casamino acids supplemented with tryptophan and cysteine). When either urea or amino acids were used as sole nitrogen source, ethanol accumulation dropped to 11 or 24 g/l, respectively, from the maximum of 46 g/l for the optimal nitrogen combination. The interaction of minerals with amino acids and/or urea was key to optimizing ethanol production by cells in both growing and stationary-phase cultures. In nongrowing cultures supplied with nitrogen as amino acids, ethanol concentration increased from 24 to 54 g/l with the addition of an optimized mineral supplement of Fe, Mn, Mg, Ca, Zn, and others.The mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号