首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular detection of Gluconacetobacter sacchari associated with the pink sugarcane mealybug Saccharicoccus sacchari (Cockerell) and the sugarcane leaf sheath microenvironment by FISH and PCR
Authors:Franke  Fegan  Hayward  Leonard  Sly
Institution:Centre for Bacterial Diversity and Identification, Department of Microbiology, The University of Queensland, Brisbane, Qld. 4072 Australia;Cooperative Research Centre for Tropical Plant Pathology, The University of Queensland, Brisbane, Qld. 4072 Australia;Bureau of Sugar Experiment Stations, Indooroopilly, Brisbane, Qld., Australia
Abstract:Molecular tools for the detection of the newly described acetic acid bacterium Gluconacetobacter sacchari from the pink sugarcane mealybug, Saccharicoccus sacchari Cockerell (Homiptera: Pseudococcidae), and in the sugarcane leaf sheath microenvironment were developed. G. sacchari specific 16S rRNA-targeted oligonucleotide primers were designed and used in PCR amplification of G. sacchari DNA directly from mealybugs, and in a nested PCR to detect low numbers of the bacteria from sugarcane leaf sheath fluid and cane internode scrapings. A sensitivity level of detection of 40-400 cells/reaction was obtained using PCR from exponentially grown bacterial cultures and of 1-10 cells in cane internode scrapings and leaf sheath fluid samples using nested PCR. The specificity of the primer set was demonstrated by the lack of amplification product formation in PCR by closely related acetic acid bacteria, including Gluconacetobacter liquefaciens, and Gluconacetobacter diazotrophicus. A Cy3 labeled probe for G. sacchari was designed and shown to be specific for the species. Investigation of the mealybug microenvironment by whole cell fluorescent in situ hybridization revealed that G. sacchari appears to represent only a minor proportion of the population of the microbiota in the mealybugs tested. This study has shown the usefulness of 16S rRNA-based molecular tools in the identification and detection of G. sacchari from environmental samples and will allow these tools to be used in further ecological research.
Keywords:Pink sugarcane mealybug  PCR  Fluorescence in situ hybridization              Gluconacetobacter sacchari
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号