首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mutagenic interaction between near-(365 nm) and far-(254 nm)ultraviolet radiation in repair-proficient and excision-deficient strains of Escherichia coli.
Authors:R M Tyrrell
Institution:Instituto de Biofísica, Centro de Ciências da Saúde (Bloco G), Universidade Federal do Rio de Janeiro Brazil
Abstract:The mutational interaction between radiation at 365 and 254 nm was studied in various strains of E. coli by a mutant assay based on reversion to amino-acid independence in full nutrient conditions. In the two repair-proficient strains (K12 AB 1157 and B/r), pre-treatment with radiation at 365 nm strongly suppressed the induction of mutations by far-UV, a phenomenon accompanied by a strong lethal interaction. The frequency of mutations induced by far-UV progressively declined with increasing dose of near-UV. Far-UV-induced mutagenesis to T5 resistance was almost unaltered by pre-treatment with near-UV. In AB 1886 uvrA there was no lethal interaction between the two wavelengths but the mutagenic interaction was synergistic. This synergism was maximal at a 365-nm dose of 8 X 10(5) J m-2. It is proposed that in the wild-type strain, cells containing potentially mutagenic lesions are selectively eliminated from the population because of abortive excision of an error-prone repair-inducing signal. In excisionless strains, 365-nm radiation may be less damaging to the error-prone than to the error-free post-replication repair system. Alternatively, mutation may be enhanced because of the occurrence of error-prone repair of 365-nm lesions by a system that is not induced in the absence of 254-nm radiation.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号