首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Solutions for transients in arbitrarily branching cables: II. Voltage clamp theory
Authors:Guy Major  Jonathan D Evans  and J Julian B Jack
Institution:University Laboratory of Physiology, Oxford, OX1 3PT, United Kingdom
Abstract:Analytical solutions are derived for arbitrarily branching passive neurone models with a soma and somatic shunt, for synaptic inputs and somatic voltage commands, for both perfect and imperfect somatic voltage clamp. The solutions are infinite exponential series. Perfect clamp decouples different dendritic trees at the soma: each exponential component exists only in one tree; its time constant is independent of stimulating and recording position within the tree; its amplitude is the product of a factor constant over that entire tree and factors dependent on stimulating and recording positions. Imperfect clamp to zero is mathematically equivalent to voltage recording with a shunt. As the series resistance increases, different dendritic trees become more strongly coupled. A number of interesting response symmetries are evident. The solutions reveal parameter dependencies, including an insensitivity of the early parts of the responses to specific membrane resistivity and somatic shunt, and an approximately linear dependence of the slower time constants on series resistance, for small series resistances. The solutions are illustrated using a “cartoon” representation of a CA1 pyramidal cell and a two-cylinder + soma model.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号