首页 | 本学科首页   官方微博 | 高级检索  
     


Different effects on activity caused by phosphorylation of tyrosine hydroxylase at serine 40 by three multifunctional protein kinases.
Authors:H Funakoshi  S Okuno  H Fujisawa
Affiliation:Department of Biochemistry, Asahikawa Medical College, Japan.
Abstract:Tyrosine hydroxylase was maximally phosphorylated by protein kinase C, with a stoichiometry of 0.43 mol of phosphate/mol of tyrosine hydroxylase subunit at Ser40, and by calmodulin-dependent protein kinase II, with stoichiometries of 0.43 mol/mol at Ser40 and 0.76 mol/mol at Ser19, respectively, without undergoing any significant direct activation. In contrast, the enzyme was maximally phosphorylated with a stoichiometry of 0.78 mol of phosphate/mol of subunit at Ser40 by cAMP-dependent protein kinase, which resulted in a large activation of the enzyme (about 3-fold activation under the assay conditions). Incubation of the enzyme, which had previously been maximally phosphorylated by calmodulin-dependent protein kinase II, with protein kinase C under phosphorylating conditions resulted in no additional incorporation of phosphate into the enzyme, suggesting that both protein kinases phosphorylated Ser40 of the same subunits of the enzyme. Since tyrosine hydroxylase is thought to be composed of four identical subunits, the results may indicate that calmodulin-dependent protein kinase II or protein kinase C phosphorylates only two of the four subunits of the enzyme at Ser40 without affecting the enzyme activity and that cAMP-dependent protein kinase phosphorylates Ser40 of all four subunits of the enzyme molecule, causing a marked activation. Based on a linear relationship between phosphorylation and the resulting activation of the enzyme by cAMP-dependent protein kinase, possible mechanisms for the activation of the enzyme by the protein kinase are discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号