首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Simulation of greenhouse gases following land‐use change to bioenergy crops using the ECOSSE model: a comparison between site measurements and model predictions
Authors:Marta Dondini  Mark I A Richards  Mark Pogson  Jon McCalmont  Julia Drewer  Rachel Marshall  Ross Morrison  Sirwan Yamulki  Zoe M Harris  Giorgio Alberti  Lukas Siebicke  Gail Taylor  Mike Perks  Jon Finch  Niall P McNamara  Joanne U Smith  Pete Smith
Institution:1. Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, UK;2. Academic Group of Engineering, Sports and Sciences, University of Bolton, Bolton, UK;3. Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, UK;4. Centre for Ecology & Hydrology, Penicuik, Midlothian, UK;5. Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, UK;6. Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK;7. Forest Research, Farnham, UK;8. Centre for Biological Sciences, Faculty of Natural & Environmental Sciences, University of Southampton, Southampton, UK;9. Department of Agricultural and Environmental Sciences, University of Udine, Udine, Italy;10. Forest Research, Midlothian, UK
Abstract:This article evaluates the suitability of the ECOSSE model to estimate soil greenhouse gas (GHG) fluxes from short rotation coppice willow (SRC‐Willow), short rotation forestry (SRF‐Scots Pine) and Miscanthus after land‐use change from conventional systems (grassland and arable). We simulate heterotrophic respiration (Rh), nitrous oxide (N2O) and methane (CH4) fluxes at four paired sites in the UK and compare them to estimates of Rh derived from the ecosystem respiration estimated from eddy covariance (EC) and Rh estimated from chamber (IRGA) measurements, as well as direct measurements of N2O and CH4 fluxes. Significant association between modelled and EC‐derived Rh was found under Miscanthus, with correlation coefficient (r) ranging between 0.54 and 0.70. Association between IRGA‐derived Rh and modelled outputs was statistically significant at the Aberystwyth site (= 0.64), but not significant at the Lincolnshire site (= 0.29). At all SRC‐Willow sites, significant association was found between modelled and measurement‐derived Rh (0.44 ≤  0.77); significant error was found only for the EC‐derived Rh at the Lincolnshire site. Significant association and no significant error were also found for SRF‐Scots Pine and perennial grass. For the arable fields, the modelled CO2 correlated well just with the IRGA‐derived Rh at one site (= 0.75). No bias in the model was found at any site, regardless of the measurement type used for the model evaluation. Across all land uses, fluxes of CH4 and N2O were shown to represent a small proportion of the total GHG balance; these fluxes have been modelled adequately on a monthly time‐step. This study provides confidence in using ECOSSE for predicting the impacts of future land use on GHG balance, at site level as well as at national level.
Keywords:ECOSSE model  energy crops  greenhouse gases  land‐use change     Miscanthus     short rotation coppice  short rotation forestry
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号