首页 | 本学科首页   官方微博 | 高级检索  
     


Long‐term climate impacts on breeding bird phenology in Pennsylvania,USA
Authors:Molly E. McDermott  Lucas W. DeGroote
Affiliation:Powdermill Nature Reserve, Carnegie Museum of Natural History, Rector, PA, USA
Abstract:Climate change is influencing bird phenology worldwide, but we still lack information on how many species are responding over long temporal periods. We assessed how climate affected passerine reproductive timing and productivity at a constant effort mist‐netting station in western Pennsylvania using a model comparison approach. Several lines of evidence point to the sensitivity of 21 breeding passerines to climate change over five decades. The trends for temperature and precipitation over 53 years were slightly positive due to intraseasonal variation, with the greatest temperature increases and precipitation declines in early spring. Regardless of broodedness, migration distance, or breeding season, 13 species hatched young earlier over time with most advancing >3 days per decade. Warm springs were associated with earlier captures of juveniles for 14 species, ranging from 1‐ to 3‐day advancement for every 1 °C increase. This timing was less likely to be influenced by spring precipitation; nevertheless, higher rainfall was usually associated with later appearance of juveniles and breeding condition in females. Temperature and precipitation were positively related to productivity for seven and eleven species, respectively, with negative relations evident for six and eight species. We found that birds fledged young earlier with increasing spring temperatures, potentially benefiting some multibrooded species. Indeed, some extended the duration of breeding in these warm years. Yet, a few species fledged fewer juveniles in warmer and wetter seasons, indicating that expected future increases could be detrimental to locally breeding populations. Although there were no clear relationships between life history traits and breeding phenology, species‐specific responses to climate found in our study provide novel insights into phenological flexibility in songbirds. Our research underscores the value of long‐term monitoring studies and the importance of continuing constant effort sampling in the face of climate change.
Keywords:breeding  climate change  migratory birds  mist‐netting  phenology  precipitation  productivity  temperature
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号