首页 | 本学科首页   官方微博 | 高级检索  
     


A model for mechanistic and system assessments of biochar effects on soils and crops and trade‐offs
Authors:Sotirios V. Archontoulis  Isaiah Huber  Fernando E. Miguez  Peter J. Thorburn  Natalia Rogovska  David A. Laird
Affiliation:1. Department of Agronomy, Iowa State University, Ames, IA, USA;2. CSIRO Agriculture, St Lucia, Qld, Australia
Abstract:We developed a biochar model within the Agricultural Production Systems sIMulator (APSIM) software that integrates biochar knowledge and enables simulation of biochar effects within cropping systems. The model has algorithms that mechanistically connect biochar to soil organic carbon (SOC), soil water, bulk density (BD), pH, cation exchange capacity, and organic and mineral nitrogen. Soil moisture (SW)–temperature–nitrogen limitations on the rate of biochar decomposition were included as well as biochar‐induced priming effect on SOC mineralization. The model has 10 parameters that capture the diversity of biochar types, 15 parameters that address biochar‐soil interactions and 4 constants. The range of values and their sensitivity is reported. The biochar model was connected to APSIM's maize and wheat crop models to investigate long‐term (30 years) biochar effects on US maize and Australia wheat in various soils. Results from this sensitivity analysis showed that the effect of biochar was the largest in a sandy soil (Australian wheat) and the smallest in clay loam soil (US maize). On average across cropping systems and soils the order of sensitivity and the magnitude of the response of biochar to various soil‐plant processes was (from high to low): SOC (11% to 86%) > N2O emissions (?10% to 43%43%) > plant available water content (0.6% to 12.9%) > BD (?6.5% to ?1.7%) > pH (?0.8% to 6.3%) > net N mineralization (?19% to 10%) > CO2 emissions (?2.0% to 4.3%) > water filled pore space (?3.7% to 3.4%) > grain yield (?3.3% to 1.8%) > biomass (?1.6% to 1.4%). Our analysis showed that biochar has a larger impact on environmental outcomes rather than agricultural production. The mechanistic model has the potential to optimize biochar application strategies to enhance environmental and agronomic outcomes but more work is needed to fill knowledge gaps identified in this work.
Keywords:Agricultural Production Systems sIMulator  biochar  bulk density  CO2 and N2O emissions  modeling  N mineralization  NH4 adsorption  plant available water content  priming  soil organic matter  soil pH
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号