首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Receptor-mediated transport of vacuolar proteins: a critical analysis and a new model
Authors:David G Robinson  Peter Pimpl
Institution:1. Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
2. Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 3, 72076, Tübingen, Germany
Abstract:In this article we challenge the widely accepted view that receptors for soluble vacuolar proteins (VSRs) bind to their ligands at the trans-Golgi network (TGN) and transport this cargo via clathrin-coated vesicles (CCV) to a multivesicular prevacuolar compartment. This notion, which we term the “classical model” for vacuolar protein sorting, further assumes that low pH in the prevacuolar compartment causes VSR–ligand dissociation, resulting in a retromer-mediated retrieval of the VSRs to the TGN. We have carefully evaluated the literature with respect to morphology and function of the compartments involved, localization of key components of the sorting machinery, and conclude that there is little direct evidence in its favour. Firstly, unlike mammalian cells where the sorting receptor for lysosomal hydrolases recognizes its ligand in the TGN, the available data suggests that in plants VSRs interact with vacuolar cargo ligands already in the endoplasmic reticulum. Secondly, the evidence supporting the packaging of VSR–ligand complexes into CCV at the TGN is not conclusive. Thirdly, the prevacuolar compartment appears to have a pH unsuitable for VSR–ligand dissociation and lacks the retromer core and the sorting nexins needed for VSR recycling. We present an alternative model for protein sorting in the TGN that draws attention to the much overlooked role of Ca2+ in VSR–ligand interactions and which may possibly also be a factor in the sequestration of secretory proteins.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号