首页 | 本学科首页   官方微博 | 高级检索  
     


Keratinocyte Growth Factor Improves Epithelial Structure and Function in a Mouse Model of Intestinal Ischemia/Reperfusion
Authors:Yujiao Cai  Wensheng Wang  Hongying Liang  Lihua Sun  Daniel H. Teitelbaum  Hua Yang
Affiliation:1. Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China.; 2. Department of Surgery, the University of Michigan Medical School, Ann Arbor, Michigan, United States of America.; University College London, United Kingdom,
Abstract:

Background

Intestinal ischemia/reperfusion (I/R) induces the desquamation of the intestinal epithelium, increases the intestinal permeability, and in patients often causes fatal conditions including sepsis and multiple organ failure. Keratinocyte growth factor (KGF) increases intestinal growth, although little is known about KGF activity on intestinal function after intestinal I/R. We hypothesized that KGF administration would improve the intestinal function in a mouse model of intestinal I/R.

Methods

Adult C57BL/6J mice were randomized to three groups: Sham, I/R group and I/R+KGF group. Mice were killed on day 5, and the small bowel was harvested for histology, wet weight, RNA and protein content analysis. Epithelial cell (EC) proliferation was detected by immunohistochemistry for PCNA, and apoptosis was determined by TUNEL staining. The expressions of Claudin-1 and ZO-1 were detected by immunohistochemistry. Epithelial barrier function was assessed with transepithelial resistance (TER).

Results

KGF significantly increased the intestinal wet weight, contents of intestinal protein and RNA, villus height, crypt depth and crypt cell proliferation, while KGF resulted in the decrease of epithelial apoptosis. KGF also stimulated the recovery of mucosal structures and attenuated the disrupted distribution of TJ proteins. Moreover, KGF attenuated the intestinal I/R-induced decrease in TER and maintained the intestinal barrier function.

Conclusion

KGF administration improves the epithelial structure and barrier function in a mouse model of intestinal I/R. This suggests that KGF may have clinical applicability.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号