首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Neurotensin receptor 1 immunoreactivity in the peripheral ganglia and carotid body
Authors:A Porzionato  V Macchi  A Amagliani  I Castagliuolo  A Parenti  R De Caro
Institution:1.Section of Anatomy, Department of Human Anatomy and Physiology;;2.Department of Histology, Microbiology, and Medical Biotechnologies;;3.Section of Pathologic Anatomy, Department of Medical Diagnostic Sciences and Special Therapies, University of Padova, Italy
Abstract:In the present study we investigated, through immunohistochemistry, the presence and location of neurotensin receptor 1 (NTR1) in the peripheral ganglia and carotid body of 16 humans and 5 rats. In both humans and rats, NTR1 immunostained ganglion cells were found in superior cervical ganglia (57.4±11.6% and 72.4±11.4%, respectively, p<0.05), enteric ganglia (51.9±10.4% and 64.6±6.1%, p<0.05), sensory ganglia (69.2±10.7% and 73.0±13.1%, p>0.05) and parasympathetic ganglia (52.1±14.1% and 59.4±14.0%, p>0.05), supporting a modulatory role for NT in these ganglia. Positivity was also detected in 45.6±9.2% and 50.8±6.8% of human and rat type I glomic cells, respectively, whereas type II cells were negative. Our findings suggest that NT produced by type I cells acts in an autocrine or paracrine way on the same cell type, playing a modulatory role on chemoception.Key words: neurotensin receptor 1, carotid body, autonomic ganglia, sensory ganglia, immunohistochemistry.Neurotensin (NT) is a tridecapeptide which was first isolated from bovine hypothalamus (Carraway and Leeman, 1973) and is widely distributed in the nervous system and intestine. In the nervous system, neurotensin acts as a neurotransmitter and neuromodulator (Dobner, 2006); in the periphery, as a paracrine or endocrine factor (Mazzocchi et al., 1997; Malendowicz, 1998). It also acts as a growth factor on various cell types (Malendowicz, 1993; Markowska et al., 1994a, 1994b; Evers, 2006).Three different NT receptors, termed NTR1, NTR2 and NTR3, have been identified and cloned to date. NTR1 and NTR2 are, respectively, high- and low-affinity seven trans-membrane domain G protein-coupled receptors. NTR3 is a high-affinity single trans-membrane domain type 1 receptor, with 100% homology with the sorting protein, gp95/sortilin (Kitabgi, 2006; Mazella et al., 1998). NTR3 can also form heterodimers with NTR1 in the plasma membrane (Martin et al., 2002). Nuclear internalization of the NTR1 has been reported and has been suggested to play a role in the production of long-term genomic effects (Feldberg et al., 1998; Laduron, 1992). It has also been reported that NTR2, but not NTR1, returns to the plasma membrane after NT-induced sequestration (Mazella and Vincent, 2006).In the peripheral nervous system, pregangliar fibers containing NT have been found in sympathetic, parasympathetic and enteric ganglia, and functional studies also suggest the expression of NTRs in ganglion cells. However, direct evidence of NTR1 protein expression in the different cell types of the ganglia has not yet been provided for human and rat. Only in rat dorsal root ganglia has evidence of NTR1 expression been given through hybridization in situ (Zhang et al., 1995), but there are no data on protein location or internalization.The carotid body is an arterial chemoreceptor, sensitive to reductions in partial blood oxygen pressure and pH and to increases in partial CO2 pressure, the stimulation of which induces increases in ventilatory frequency and volume.The carotid body is situated at the carotid bifurcation, and is composed of parenchymal lobules separated by connective tissue, in which afferent fibers of the glossopharyngeal nerve, arising from the petrosal ganglion, occur (Porzionato et al., 2005).Two different cell populations are present in the carotid body: type I cells, in turn separated into light, dark and pyknotic, and type II cells, at the edges of the clusters. Post-ganglionic sympathetic nerve fibers from the superior cervical ganglion are present, innervating blood vessels and type I cells, and preganglionic parasympathetic and sympathetic fibers reaching ganglion cells near the glomic cells. NT has been detected in glomic cells (Heath et al., 1988; Heym and Kummer, 1989; Smith et al., 1990) but the presence of the corresponding receptors in the various glomic cell types has not yet been investigated.Thus, the aim of the present study was to investigate, through immunohistochemistry, the presence and location of NTR1 in the peripheral ganglia and carotid body of both human and rat, with particular reference to the different cell types.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号