首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of castration on the expression of the NGF and TrkA in the vas deferens and accessory male genital glands of the rat
Authors:C Squillacioti  A De Luca  S Paino  E Langella  N Mirabella
Institution:1.Department of Structures, Functions and biological Technologies – University of Naples “Federico II”;;2.Department of Sciences of animal productions, Università della Basilicata, Potenza, Italy
Abstract:Nerve Growth Factor (NGF) is a member of the neurotrophin family. Neurotrophins exert their effects by binding to corresponding receptors, which are formed by the tyrosine protein kinases TrkA, TrkB, and TrkC, and the low affinity p75NTR receptor. The role of neurotrophins in the biology of male genital organs is far from clear. In particular, little is known about the influence of sex hormones on the expression of neurotrophins and their receptors. In the present study, using immunohistochemistry and real time RT-PCR, we investigated the expression of NGF and TrkA in the vas deferens and accessory male genital glands in normal and castrated rats.In normal rats, both NGF- and TrkA-immunoreactivities (IR) were localized in the epithelial layer of the vas deferens. NGF-IR was also found in the stroma and epithelium of the vesicular gland and prostate. TrkA-IR was distributed in the epithelial cells of vesicular and prostate glands. The nerves were weakly immunoreactive in all the examined organs. After castration the immunoreactivities increased. Real-time RT-PCR experiments indicated that NGF and TrkA mRNA levels increased significantly after castration. These results suggest that NGF and TrkA are expressed in the internal male genital organs of the rat and that their expression is downregulated by androgen hormones. We hypothesize NGF and TrkA play a role in the processes that regulate the involution of these organs under conditions of androgen deprivation.Key words: androgen hormones, stromal cells, immunohistochemistry, real-time RT-PCR, prostate.Nerve growth factor (NGF) is a member of the neurotrophin family, a family of neurotrophic factors that also includes Brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3) and neurotrophins 4/5 (NT4/5). Neurotrophins have essential roles in the survival, development and differentiation of neurons in the central and peripheral nervous systems (Levi-Montalcini, 1987; Ernfors et al., 1994; Snider, 1994; Barbacid, 1995; Huang and Reichart, 2001; Murer et al., 2001). Furthermore, recent data show that neurotrophins are involved in a variety of biological processes in nonneuronal tissues (Yamamoto et al., 1996; Sariola, 2001; Leon et al., 1994; Rosenbaum et al., 1998; Tessarollo, 1998). The biological effects of neurotrophins are mediated by tyrosine kinase receptors encoded by the trk protooncogene family, known as TrkA,TrkB and TrkC (Barbacid, 1995; Lewin and Barde, 1996; Patapoutian and Reichart, 2001). The Trk receptors are specific for their ligands; NGF is the preferred ligand for TrkA, BDNF and NT-4/5 are preferred ligands for TrkB and NT-3 is the preferred ligand for TrkC. In addition, all neurotrophins are recognized by a more widely expressed low-affinity receptor known as panneu-rotrophinreceptor p75NTR, which is a member of the tumor necrosis factor (TNF) receptor family (Teng &Hempstead, 2004).The presence of neurotrophins in the accessory male genital tissues has been well documented. NGF and large quantities of NGF have been found in the vesicular and prostate glands and are related to the rich sympathetic innervation of these organs (Harper et al., 1979, 1982; Harper and Thoenen, 1980; Hofmann and Unsicker, 1982).NGF and its receptors (TrkA, p75NTR) have been immunohistochemically expressed in the reproductive organs of the adult male rats (Li et al., 2005). In the prostate, NGF and NGF precursor have been immunohistochemically localized in the glandular epithelium, suggesting that secretory epithelial cells are the site of production of this factor (Shikata et al., 1984; MacGrogan et al., 1991; Paul et al., 1996). Paracrine neurotrophin synthesis by stromal cells has also been postulated (Pflug et al,. 1995; Dalal and Djakiew, 1997; Weeraratna et al., 2000). High- and low-affinity neurotrophin receptors have been recognized in the nerves and epithelial cells of the prostate (Weeraratna et al., 2000; Graham et al., 1992; MacGrogan et al., 1992; Paul and Habib, 1998; Guate et al., 1999), thus indicating that neurotrophins play a role as growth-regulating factors in this gland.The exact role of neurotrophins in the biology of male genital organs, however, is far from clear. Recently, in the vas deferens and accessory male genital glands of the rat, the expression of the BDNF and its receptors (TrkB and p75NTR) has been reported to be regulated by androgen hormones (Mirabella et al., 2006; Mirabella et al., 2008). In castrated rats, moreover, BDNF has been hypothesized to regulate, via interacting p75NTR, the castration-induced regression of the sympathetic innervation (Mirabella et al., 2006).The present study has, therefore, been undertaken to elucidate the presence and localization of NGF and TrkA in the vas deferens and accessory male genital glands of the rat. In addition, the expression of these proteins and their mRNAs have been determined after castration in order to evaluate whether this neurotrophin and its specific receptor are under the control of androgens.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号