首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair
Authors:Ström Lena  Lindroos Hanna Betts  Shirahige Katsuhiko  Sjögren Camilla
Institution:Department of Cell and Molecular Biology, Karolinska Institute, Berzelius v?g 35, 171 77 Stockholm, Sweden.
Abstract:Chromosome stability depends on accurate chromosome segregation and efficient DNA double-strand break (DSB) repair. Sister chromatid cohesion, established during S phase by the protein complex cohesin, is central to both processes. In the absence of cohesion, chromosomes missegregate and G2-phase DSB repair fails. Here, we demonstrate that G2-phase repair also requires the presence of cohesin at the damage site. Cohesin components are shown to be recruited to extended chromosome regions surrounding DNA breaks induced during G2. We find that in the absence of functional cohesin-loading proteins (Scc2/Scc4), the accumulation of cohesin at DSBs is abolished and repair is defective, even though sister chromatids are connected by S phase generated cohesion. Evidence is also provided that DSB induction elicits establishment of sister chromatid cohesion in G2, implicating that damage-recruited cohesin facilitates DNA repair by tethering chromatids.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号