首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Soluble electron-transport activities in fresh and aged turnip tissue
Authors:J M Rungie  J T Wiskich
Institution:(1) Department of Botany, University of Adelaide, Adelaide, Australia
Abstract:Summary A soluble (supernatant) fraction from turnips catalyses the reduction of both FeCN and DCPIP but usually not cytochrome c in the presence of either NADH or NADPH. Slicing and aging turnip tissue induces an increase in these activities as well as the development of an NADH-cytochrome c reductase activity.(NH4)2SO4 and Sephadex fractionation indicated that at least three enzymes were involved: an NADH-cytochrome-c reductase, an NADH-FeCN reductase, and an NAD(P)H-DCPIP and FeCN reductase. While the latter reductase had an acid pH optimum, indicating vacuolar origin, the NADH-cytochrome-c and FeCN reductases both had neutral pH optima, indicating cytoplasmic origin. Characterization of the NADH-specific reductases indicated that NADH-FeCN reductase may be a soluble form of the microsomal membrane NADH dehydrogenase but that NADH-cytochrome-c reductase may be normally soluble and possibly involved in cyanide-sensitive NADH oxidation.The induced development of all three reductases was inhibited by 6-methylpurine, ethionine and cycloheximide, indicating dependence on both RNA and protein synthesis. The inhibition by cycloheximide could be reversed but this reversion required a 20-h washing-out period to be complete.Abbreviations DCPIP 2,6-dichlorophenol indophenol - FeCN ferricyanide - NO QNO 2-n-nonylhydroxyquinoline-N-oxide - pCMB p-chloromercuribenzoate - SF soluble fraction
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号