首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Determination of proton transfer rates by chemical rescue: application to bacterial reaction centers
Authors:Paddock M L  Adelroth P  Feher G  Okamura M Y  Beatty J T
Institution:Department of Physics 0319, University of California-San Diego, 9500 Gilman Drive, La Jolla 92093-0319, USA.
Abstract:The bacterial reaction center (RC) converts light into chemical energy through the reduction of an internal quinone molecule Q(B) to Q(B)H(2). In the native RC, proton transfer is coupled to electron transfer and is not rate-controlling. Consequently, proton transfer is not directly observable, and its rate was unknown. In this work, we present a method for making proton transfer rate-controlling, which enabled us to determine its rate. The imidazole groups of the His-H126 and His-H128 proton donors, located at the entrance of the transfer pathways, were removed by site-directed mutagenesis (His --> Ala). This resulted in a reduction in the observed proton-coupled electron transfer rate (Q(A)(-)(*)Q(B))Glu(-) + H(+) --> (Q(A)Q(B)(-)(*))GluH], which became rate-controlled by proton uptake to Glu-L212 Adelroth, P., et al. (2001) Biochemistry 40, 14538-14546]. The proton uptake rate was enhanced (rescued) in a controlled fashion by the addition of imidazole or other amine-containing acids. From the dependence of the observed rate on acid concentration, an apparent second-order rate constant k((2)) for the "rescue" of the rate was determined. k((2)) is a function of the proton transfer rate and the binding of the acid. The dependence of k((2)) on the acid pK(a) (i.e., the proton driving force) was measured over 9 pK(a) units, resulting in a Br?nsted plot that was characteristic of general acid catalysis. The results were fitted to a model that includes the binding (facilitated by electrostatic attraction) of the cationic acid to the RC surface, proton transfer to an intermediate proton acceptor group, and subsequent proton transfer to Glu-L212. A proton transfer rate constant of approximately 10(5) s(-)(1) was determined for transfer from the bound imidazole group to Glu-L212 (over a distance of approximately 20 A). The same method was used to determine a proton transfer rate constant of 2 x 10(4) s(-)(1) for transfer to Q(B)(-)(*). The relatively fast proton transfer rates are explained by the presence of an intermediate acceptor group that breaks the process into sequential proton transfer steps over shorter distances. This study illustrates an approach that could be generally applied to obtain information about the individual rates and energies for proton transfer processes, as well as the pK(a)s of transfer components, in a variety of proton translocating systems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号