首页 | 本学科首页   官方微博 | 高级检索  
     


A Role for the Karyopherin Kap123p in Microtubule Stability
Authors:Christopher Ptak  rea M. Anderson  Robert J. Scott  David Van de Vosse  Richard S. Rogers  Yaroslav Sydorskyy  John D. Aitchison   Richard W. Wozniak
Affiliation:Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7 Canada;
Institute for Systems Biology, Seattle, Washington, 98103-8904, USA
Abstract:Several components of the nuclear transport machinery play a role in mitotic spindle assembly in higher eukaryotes. To further investigate the role of this family of proteins in microtubule function, we screened for mutations in Saccharomyces cerevisiae that confer sensitivity to microtubule-destabilizing drugs. One mutant exhibiting this phenotype lacked the gene encoding the karyopherin Kap123p. Analysis of kap123 Δ cells revealed that the drug sensitivity was caused by a defect in microtubule stability and/or assembly. In support of this idea, we demonstrated genetic interactions between the kap123 Δ mutation and mutated alleles of genes encoding α-tubulins and factors controlling microtubule dynamics. Moreover, kap123 Δ cells exhibit defects in spindle structure and dynamics as well as nuclear positioning defects during mitosis. Cultures of kap123 Δ strains are enriched for mononucleated large-budded cells often containing short spindles and nuclei positioned away from the budneck, phenotypes indicative of defects in both cytoplasmic and nuclear microtubules. Finally, we identified a gene, CAJ1 , which when deleted in combination with KAP123 exacerbated the microtubule-related defects of the kap123 Δ mutants. We propose that Kap123p and Caj1p, a member of the Hsp40 family of proteins, together play an essential role in normal microtubule function.
Keywords:karyopherin    microtubules    nuclear transport
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号