首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Extracellular pH modulates the Ca2+ current activated by depletion of intracellular Ca2+ stores in human macrophages
Authors:A Malayev  D J Nelson
Institution:(1) Departments of Neurology, Medicine, and Pharmacological and Physiological Sciences, The University of Chicago, 60637 Chicago, IL
Abstract:Intracellular Ca2+ (Cai) signaling following the binding of surface receptors activates a Ca2+ permeable plasma membrane conductance which has been shown to be associated with store depletion in a number of cell types. We examined the activation of this conductance in human monocyte-derived macrophages (HMDMs) using whole-cell voltage-clamp techniques coupled with fura-2 microfluorimetry and characterized the importance of external pH (pHo) as a modulator of current amplitude. Current activation was observed following experimental maneuvers designed to deplete intracellular Ca2+-stores including: (i) dialysis of the cell with 100 mgrm inositol 1,4,5-triphosphate (IP3), (ii) intracellular dialysis with high concentrations of the Ca2+ buffers EGTA and BAPTA, or (iii) exposure of the cell to the Ca2+-ATPase inhibitor thapsigargin (1 mgrm). Currents associated with store depletion were inwardly rectifying with kinetics, inactivation, and selectivity that appeared similar irrespective of the mode of activation. Currents were Ca2+ selective with a selectivity sequence of Ca2+ > Sr2+ Gt Mg2+ = Mn2+ = Ni2+. The Ca2+ influx current was modulated by changes in pHo; modulation was not produced as a consequence of changes in internal pH (pHi). External acidification led to a reversible reduction in current amplitude with a pKa at pH 8.2. Changes in pHo alone failed to induce current activation. These observations are consistent with a scheme by which changes in pHo, as would be encountered by macrophages at sites of inflammation, could change the time course and magnitude of the Cai transient associated with receptor activation by regulating the influx of Ca2+ ions.The authors wish to gratefully acknowledge the expert technical assistance of Weiwen Xie without whom the study could not have been completed. This work was supported by National Institutes of Health GM36823.
Keywords:Macrophage activation  Inositol 1  4  5-trisphosphate  Calcium current  Protons  Thapsigargin  Inflammation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号