首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Decreased capacity of recombinant 45/47-kDa molecules (Apa) of Mycobacterium tuberculosis to stimulate T lymphocyte responses related to changes in their mannosylation pattern.
Authors:C Horn  A Namane  P Pescher  M Rivière  F Romain  G Puzo  O Barzu  G Marchal
Institution:Unité de Physiopathologie de l'Infection, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France.
Abstract:The Apa molecules secreted by Mycobacterium tuberculosis, Mycobacterium bovis, or BCG have been identified as major immunodominant antigens. Mass spectrometry analysis indicated similar mannosylation, a complete pattern from 1 up to 9 hexose residues/mole of protein, of the native species from the 3 reference strains. The recombinant antigen expressed in M. smegmatis revealed a different mannosylation pattern: species containing 7 to 9 sugar residues/mole of protein were in the highest proportion, whereas species bearing a low number of sugar residues were almost absent. The 45/47-kDa recombinant antigen expressed in E. coli was devoid of sugar residues. The proteins purified from M. tuberculosis, M. bovis, or BCG have a high capacity to elicit in vivo potent delayed-type hypersensitivity (DTH) reactions and to stimulate in vitro sensitized T lymphocytes of guinea pigs immunized with living BCG. The recombinant Apa expressed in Mycobacterium smegmatis was 4-fold less potent in vivo in the DTH assay and 10-fold less active in vitro to stimulate sensitized T lymphocytes than the native proteins. The recombinant protein expressed in Escherichia coli was nearly unable to elicit DTH reactions in vivo or to stimulate T lymphocytes in vitro. Thus the observed biological effects were related to the extent of glycosylation of the antigen.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号