首页 | 本学科首页   官方微博 | 高级检索  
     


Cloning and characterization of the alpha(1,3/4) fucosyltransferase of Helicobacter pylori
Authors:Rasko D A  Wang G  Palcic M M  Taylor D E
Affiliation:Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
Abstract:The gastric pathogen Helicobacter pylori can express the histo blood group antigens, which are on the surface of many human cells. Most H. pylori strains express the type II carbohydrates, Lewis X and Y, whereas a small population express the type I carbohydrates, Lewis A and B. The expression of Lewis A and Lewis X, as in the case of H. pylori strain UA948, requires the addition of fucose in alpha1,4 and alpha1,3 linkages to type I or type II carbohydrate backbones, respectively. This work describes the cloning and characterization of a single H. pylori fucosyltransferase (FucT) enzyme, which has the ability to transfer fucose to both of the aforementioned linkages in a manner similar to the human fucosyltransferase V (Fuc-TV). Two homologous copies of the fucT gene have been identified in each of the genomes sequenced. The characteristic adenosine and cytosine tracts in the amino terminus and repeated regions in the carboxyl terminus are present in the DNA encoding the two UA948fucT genes, but these genes also contain differences when compared with previously identified H. pylori fucTs. The UA948fucTa gene encodes an approximately 52-kDa protein containing 475 amino acids, whereas UA948fucTb does not encode a full-length FucT protein. In vitro, UA948FucTa appears to add fucose with a greater than 5-fold preference for type II chains but still retains significant activity using type I acceptors. The addition of the fucose to the type II carbohydrate acceptors, by UA948FucTa, does not appear to be affected by fucosylation at other sites on the carbohydrate acceptor, but the rate of fucose transfer is affected by terminal fucosylation of type I acceptors. Through mutational analysis we demonstrate that only FucTa is active in this H. pylori isolate and that inactivation of this enzyme eliminates expression of all Lewis antigens.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号