首页 | 本学科首页   官方微博 | 高级检索  
     


Elevated CO2 and water-availability effect on gas exchange and nodule development in N2-fixing alfalfa plants
Authors:Iker Aranjuelo  Juan José Irigoyen  Salvador Nogués  Manuel Sánchez-Díaz
Affiliation:1. Unitat de Fisologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain;2. Departamento de Biología Vegetal, Seccion Biologia Vegetal (Unidad Asociada al CSIC, EEAD, Zaragoza), Facultades de Ciencias y Farmacia, Universidad de Navarra, C/Irunlarrea 1, Pamplona, Spain;1. College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China;2. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China;3. School of Chemistry & Chemical Engineering, Ningxia University, Yinchuan 750021, P.R. China;4. Institute of Animal Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, P.R. China;1. Department of Radiation Oncology, Geneva University Hospital, Geneva, Switzerland;2. Department of Surgery, Geneva University Hospital, Geneva, Switzerland;3. Oncosurgery Unit, Geneva University Hospital, Geneva, Switzerland;4. Radiation Oncology Institute, Hirslanden Lausanne, Lausanne, Switzerland;1. Grupo de Fisiología del Estrés en Plantas (Dpto. de Biología Ambiental), Unidad Asociada al CSIC, EEAD, Zaragoza e ICVV, Logroño, Facultades de Ciencias y Farmacia, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain;2. Estación Experimental de Aula Dei (EEAD), CSIC, Dpto. Nutrición Vegetal, Apdo. 13034, 50080 Zaragoza, Spain;1. Crop Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegaard Allé 13, DK-2630 Taastrup, Denmark;2. Section for Organismal Biology, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Rolighedsvej 21, DK-1871 Frederiksberg, Denmark;1. Agricultural & Biological Engineering Department, University of Florida, Gainesville, FL 32611, United States;2. Natural Resources Institute Finland (Luke), FI-00790 Helsinki, Finland;3. Institute of Crop Science and Resource Conservation (INRES), Universität Bonn, 53115, Germany;4. National Institute for Agricultural Research (INRA), UMR1248 Agrosystèmes et développement territorial, 31326 Castanet-Tolosan Cedex, France;5. INRA, UMR1095 Genetics, Diversity and Ecophysiology of Cereals (GDEC), F-63 100 Clermont-Ferrand, France;6. Blaise Pascal University, UMR1095 GDEC, F-63 170 Aubière, France;7. National Laboratory for Agriculture and Environment, Ames, IA 50011, United States;8. National Aeronautics and Space Administration (NASA), Goddard Institute for Space Studies, New York, NY 10025, United States;9. Commonwealth Scientific and Industrial Research Organization (CSIRO), Ecosystem Sciences, Dutton Park QLD 4102, Australia;10. Institute of Landscape Systems Analysis, Leibniz Centre for Agricultural Landscape Research, 15374 Müncheberg, Germany;11. CGIAR Research Program on Climate Change, Agriculture and Food Security, CIMMYT, New Delhi 110012, India;12. Department of Geological Sciences and Kellogg Biological Station, Michigan State University, East Lansing, MI, United States;13. National Institute for Agricultural Research (INRA), US1116 AgroClim, F- 84 914 Avignon, France;14. Institute of Soil Ecology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, D-85764, Germany;15. National Institute for Agricultural Research (INRA), UMR0211 Agronomie, F-78750 Thiverval-Grignon, France;p. AgroParisTech, UMR0211 Agronomie, F-78750 Thiverval-Grignon, France;q. Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds LS29JT, United Kingdom;r. CGIAR-ESSP Program on Climate Change, Agriculture and Food Security, International Centre for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia;s. Cantabrian Agricultural Research and Training Centre (CIFA), 39600 Muriedas, Spain;t. Water & Earth System Science Competence Cluster, c/o University of Tübingen, 72074 Tübingen, Germany;u. International Atomic Energy Agency, 1400 Vienna, Austria;v. School of Agriculture, Policy and Development, University of Reading, RG6 6AR, United Kingdom;w. Joint Research Center, via Enrico Fermi, 2749 Ispra, 21027 Italy;x. Department of Plant Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1, Canada;y. Institute of Soil Science and Land Evaluation, Universität Hohenheim, 70599 Stuttgart, Germany;z. Dept. of Geographical Sciences, Univ. of Maryland, College Park, MD 20742, United States;1. Texas A&M AgriLife Research and Extension Center, Texas A&M Univ., Temple, TX 76502, United States;2. Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany;3. Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research Institute, New Delhi 110 012, India;4. Landscape & Water Sciences, Department of Economic Development, Jobs, Transport and Resources, Horsham, Victoria 3400, Australia;5. Department of Agroecology, Aarhus University, 8830, Tjele, Denmark;6. National Centre for Atmospheric Science, Department of Meteorology, University of Reading, RG6 6BB, United Kingdom;7. Computational and Systems Biology Department, Rothamsted Research, Harpenden, Herts, AL5 2JQ, United Kingdom;8. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy;9. Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, United States;10. Water Sytems and Global Change Group, Wageningen University, The Netherlands;11. Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China;12. Institute for Climate and Water, INTA-CIRN, 1712 Castelar, Argentina;13. USDA ARS, ALARC, Maricopa, AZ, USA;14. Plant Production Systems, Wageningen University, 6700AA Wageningen 37, The Netherlands;15. Department of Crop Sciences, Georg-August-University Goettingen, Germany;P. Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany;1. Grupo de Fisiología del Estrés en Plantas (Unidad Asociada al CSIC, EEAD, Zaragoza e ICVV, Logroño), Departamento de Biología Ambiental, Facultades de Ciencias y Farmacia, Universidad de Navarra, C/ Irunlarrea, 1, 31008 Pamplona, Spain;2. Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206W. Gregory Drive, Urbana, IL 61801, USA
Abstract:N2-fixing alfalfa plants were grown in controlled conditions at different CO2 levels (350 μmol mol?1 versus 700 μmol mol?1) and water-availability conditions (WW, watered at maximum pot water capacity versus WD, watered at 50% of control treatments) in order to determine the CO2 effect (and applied at two water regimes) on plant growth and nodule activity in alfalfa plants. The CO2 stimulatory effect (26% enhancement) on plant growth was limited to WW plants, whereas no CO2 effect was observed in WD plants. Exposure to elevated CO2 decreased Rubisco carboxylation capacity of plants, caused by a specific reduction in Rubisco (EC 4.1.1.39) concentration (11% in WW and 43% in WD) probably explained by an increase in the leaf carbohydrate levels. Plants grown at 700 μmol mol?1 CO2 maintained control photosynthetic rates (at growth conditions) by diminishing Rubisco content and by increasing nitrogen use efficiency. Interestingly, our data also suggest that reduction in shoot N demand (reflected by the TSP and especially Rubisco depletion) affected negatively nodule activity (malate dehydrogenase, EC 1.1.1.37, and glutamate-oxaloacetate transaminase, EC 2.6.1.1, activities) particularly in water-limited conditions. Furthermore, nodule DM and TSS data revealed that those nodules were not capable to overcome C sink strength limitations.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号