首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The diagonal band of Broca is involved in the pressor pathway activated by noradrenaline microinjected into the periaqueductal gray area of rats
Authors:Gislaine Garcia Pelosi  Rodrigo Fiacadori Tavares  Fernando Morgan Aguiar Corrêa
Institution:Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, 14040-900, Ribeirão Preto, São Paulo, Brazil
Abstract:AimsThe dorsal periaqueductal gray area (dPAG) is involved in cardiovascular modulation. Previously, we reported that noradrenaline (NA) microinjection into the dPAG caused a pressor response that was mediated by vasopressin release into the circulation. However, the neuronal pathway that mediates this response is as yet unknown. There is evidence that chemical stimulation of the diagonal band of Broca (dbB) also causes a pressor response mediated by systemic vasopressin release. In the present study, we evaluated the participation of the dbB in the pressor response caused by NA microinjection into the dPAG as well as the existence of neural connections between these areas.Main methodsWith the above goal, we verified the effect of the pharmacological ablation of the dbB on the cardiovascular response to NA microinjection into the dPAG of unanesthetized rats. In addition, we microinjected the neuronal tracer biotinylated-dextran-amine (BDA) into the dPAG and looked for efferent projections from the dPAG to the dbB.Key findingsThe pharmacologically reversible ablation of the dbB with local microinjection of CoCl2 significantly reduced the pressor response caused by NA microinjection (15 nmol/50 nL) into the dPAG. In addition, BDA microinjection into the dPAG labeled axons in the dbB, pointing to the existence of direct connections between these areas.SignificanceThe present results indicate that synapses within the dbB are involved in the pressor pathway activated by NA microinjection into the dPAG and direct neural projection from the dPAG to the dbB may constitute the neuroanatomic substrate for this pressor pathway.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号