首页 | 本学科首页   官方微博 | 高级检索  
     


Ionic behaviors and nerve growth factor dependence in developing chick ganglia. II. Studies with neurons of dorsal root ganglia
Authors:S D Skaper  S Varon
Affiliation:Department of Biology and School of Medicine, University of California at San Diego, La Jolla, California 92093 USA
Abstract:Using intact dorsal root ganglia (DRG) from embryonic (E) chick and measuring 22Na+ accumulation, the authors have recently shown that (i) ionic control by the ganglia has a complete requirement for exogenous NGF between E6 and E10, and (ii) control of ion pump mechanisms independent of exogenous NGF is progressively acquired by these ganglia from E10 to E16. Similar experiments have now been carried out using enriched suspensions of ganglionic neurons to test whether the acquisition of endogenous control by older ganglia was (1) due to the close association between neurons and nonneurons, and (2) correlated with a decreasing need by these neurons for exogenous NGF for survival in culture. In this enriched neuronal population, Na+ accumulation in the absence of NGF increases from E7 to E10, paralleling the increase in Na+ accessible space under ouabain, but then decreases conspicuously between E10 and E16, despite little change in the ouabain-sensitive Na+ space. NGF prevents Na+ accumulation during the early period, and becomes increasingly irrelevant for this behavior in later (after E10) development. K+ movements (traced with 86Rb+) behaved similarly. Active K+ influx (Na+, K+-pump mediated) also increases severalfold between E7 and E10. This K+ influx is sensitive to NGF at E7 and E10 but not at E14, paralleling the observed Na+ and K+ behaviors. These data suggest that the control of Na+, K+-pump performances acquired by these neurons between E10 and E16 represents the development of a neuronal self-sufficiency. This increase in ionic control is not due to an increase in pump molecules or pumping efficiency. No increases in the binding of [3H]ouabain or active K+ influx occur between E10 and E16, when ionic control is developing. The ionic dependence on NGF by the DRG neurons changes with their developmental age along the same temporal pattern displayed by their survival response to NGF in culture.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号