首页 | 本学科首页   官方微博 | 高级检索  
     


A microcytofluorometric method for quantitative and qualitative evaluation of CFU-E and BFU-E colonies
Authors:N. Maruo  M. Ozawa  M. Kondo  S. Fujita
Affiliation:(1) First Department of Internal Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, 602 Kyoto, Japan;(2) Second Department of Pathology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, 602 Kyoto, Japan
Abstract:Summary A new method has been developed for the precise identification of human bone marrow colony forming unit erythroid (CFU-E) and burst forming unit erythroid (BFU-E) colonies, and for determination of the hemoglobin contents using microcytofluorometry. The method relies on a photochemical reaction in which intracellular hemoglobin is converted into fluorescent porphyrin under violet light (lambda=405 nm) in the presence of an SH-donor (mercaptoethylamine hydrochloride). The CFU-E and BFU-E colonies showed red fluorescence with two spectrum peaks at 600 and 650 nm when illuminated by violet light. These two peaks are consistent with those of porphyrin fluorescence. The porphyrin fluorescence was not inducible in colony forming unit granulocyte-macrophage (CFU-GM) colonies, while 20% of the CFU-GM colonies were false positive with respect to the conventional benzidine reaction. The photochemically inducible fluorescence began to appear in BFU-E colonies on the 4th day of culture, while the same colonies started to be positive for the benzidine reaction on the 9th day. Therefore, the photochemical reaction was more specific and sensitive than the benzidine reaction for the identification of CFU-E and BFU-E colonies. In addition, this method enabled us to measure the hemoglobin level in the cells forming the colonies because the intensity of the fluorescence was proportional to the amount of hemoglobin when the photochemical reaction was carried out for 50 min. As a result of qualitative and quantitative analysis of CFU-E colonies by this method, it was possible to detect the hemoglobin levels in the colonies from 1 of 4 cases of untreated acute nonlymphocytic leukemia and from 2 of 4 cases of myelodysplastic syndrome in which the hemoglobin levels were too low to be detected by the benzidine reaction. These cases, where the CFU-E colonies showed very low levels of hemoglobin, were associated with poor prognosis. Thus, our method is useful for identifying CFU-E colonies, determining their hemoglobin synthesis, and as a cue to predict the clinical course of the patients.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号