首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Terminal settling velocity and physical properties of pollen grains in still air
Authors:Yuuki Hirose  Kazuo Osada
Institution:1.Graduate School of Environmental Studies,Nagoya University,Nagoya,Japan;2.Panasonic Corporation,Osaka,Japan
Abstract:Numerical simulation of wind pollination requires knowledge of pollen grain physical parameters such as size, shape factor, bulk density, and terminal settling velocity. The pollen grain parameters for Japanese cedar, Japanese cypress, short ragweed, Japanese black pine, and Japanese red pine were assessed for dry condition. Terminal settling velocities of dry pollen grains in still air were measured using image analysis of scattered light tracks in a dark settling tube. The measurement system was validated by comparing results to those obtained for standard microspheres of known size and density. Dry pollen grain shape factors indicate the resemblance of particles to spheres, except for pine pollen. Circularity factors of dry pine pollen grains were 0.90–0.86, suggesting more irregular shape than those of other pollen species. Aerodynamic diameters of dry pollen grains were calculated based on the terminal settling velocity. Aerodynamic diameters of Japanese cedar, Japanese cypress, and short ragweed closely resembled the projected area equivalent diameters, suggesting that aerodynamic behaviors of these pollen grains can be managed simply in numerical simulations. However, aerodynamic diameters of dry pine pollen grains were nearly 30 % smaller than projected area equivalent diameters. Sacci on dry pine pollen can reduce the terminal settling velocity through low density and shape effects attributed to their non-sphericity, engendering aerodynamic diameter smaller by more than 10 µm from area equivalent diameters.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号