首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Selective block of calcium current by lanthanum in single bullfrog atrial cells
Authors:R D Nathan  K Kanai  R B Clark  W Giles
Institution:Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77550.
Abstract:A single suction microelectrode voltage-clamp technique was used to study the actions of lanthanum ions (La3+) on ionic currents in single cells isolated from bullfrog right atrium. La3+, added as LaCl3, blocked the "slow" inward Ca2+ current (ICa) in a dose-dependent fashion; 10(-5) M produced complete inhibition. This effect was best fitted by a dose-response curve that was calculated assuming 1:1 binding of La3+ to a site having a dissociation constant of 7.5 x 10(-7) M. La3+ block was reversed (to 90% of control ICa) following washout and, in the presence of 10(-5) M La3+, was antagonized by raising the Ca2+ concentration from 2.5 to 7.5 mM (ICa recovered to 56% of the control). However, the latter effect took approximately 1 h to develop. Concentrations of La3+ that reduced ICa by 12-67%, 0.1-1.5 x 10(-6) M, had no measurable effect upon the voltage dependence of steady state ICa inactivation, which suggest that at these concentrations there are no significant surface-charge effects of La3+ on this gating mechanism. Three additional findings indicate that doses of La3+ that blocked ICa failed to produce nonspecific effects: (a) 10(-5) M La3+ had no measurable effect on the time-independent inwardly rectifying current, IK1; (b) the same concentration had no effect on the kinetics, amplitude, or voltage dependence of a time- and voltage-dependent K+ current, IK; and (c) 10(-4) M La3+ did not alter the size of the tetrodotoxin-sensitive inward Na+ current, INa, or the voltage dependence of its steady state inactivation. Higher concentrations (0.5-1.0 mM) reduced both IK1 and IK, and shifted the steady state activation curve for IK toward more positive potentials, presumably by reducing the external surface potential. Our results suggest that at a concentration of less than or equal to 10(-5) M, La3+ inhibits ICa selectively by direct blockade of Ca channels rather than by altering the external surface potential. At higher concentrations, La3+ exhibits nonspecific effects, including neutralization of negative external surface charge and inhibition of other time- and voltage-dependent ionic currents.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号