Hormonal responses to 1,25-dihydroxyvitamin D3 in cultured mouse osteoblast-like cells--modulation by changes in receptor level |
| |
Authors: | T L Chen J M Li T V Ye C M Cone D Feldman |
| |
Abstract: | The level of 1,25(OH)2D3 receptors in cultured mouse osteoblast-like (OB) cells is modulated by the rate of cell proliferation. We have studied two 1,25(OH)2D3-induced bioresponses to ascertain whether the changes in receptor levels during growth in culture alter cell responsiveness. Nuclear receptor levels were high (127 fmol/100 micrograms DNA) in rapidly dividing (log) cells and low (25 fmol/100 micrograms DNA) in quiescent (confluent) cells. The bioresponses we studied were induction of 25(OH)D3-24-hydroxylase activity (24-hydroxylase) and inhibition of collagen synthesis. The basal levels of 24-hydroxylase were low and similar in cells at log growth phase and confluence. At a maximal induction dose of 13 nM, 1,25(OH)2D3 induced a three-fold rise in enzyme activity at long growth phase, but only caused less than two-fold rise at confluence. The half-maximal dose (ED50) was slightly shifted from 0.6 nM to 0.8 nM. Daily measurement of 1,25(OH)2D3 receptor levels and maximal induction of 24-hydroxylase activity throughout the culture cycle showed a strong correlation between receptor abundance and enzyme induction. The basal level of collagen synthesized by cells in log growth phase was approximately 5% and increased to approximately 8% at confluence. Maximal inhibition of collagen synthesis by 1,25(OH)2D3 reached 80% of control levels in log cells, but was only 40% of control in confluent cells. The ED50 was approximately 0.1 nM in the log cells and increased to approximately 1 nM at confluence. Daily assay of 1,25(OH)2D3 receptor levels and 1,25(OH)2D3 responses during the culture cycle indicated a correlation between changes in receptor level and the extent of inhibition of collagen synthesis. These changes in bioresponse at various growth phases did not occur in rat OB cells where the 1,25(OH)2D3 receptor levels were independent of cell proliferation. The results indicate that cell proliferation rate, via change in receptor levels, determines the magnitude and sensitivity of the cellular responses to 1,25(OH)2D3. |
| |
Keywords: | |
|
|