首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The carboxy‐terminal tail of connexin43 gap junction protein is sufficient to mediate cytoskeleton changes in human glioma cells
Authors:Sophie Crespin  John Bechberger  Marc Mesnil  Christian C Naus  Wun‐Chey Sin
Institution:1. Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS‐UMR 6187, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France;2. Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
Abstract:Connexin43 (Cx43) is a ubiquitously expressed member of the gap junction protein family that mediates gap junction intercellular communication (GJIC) by allowing exchange of cytosolic materials. Previous studies have used Cx43 truncated at the cytoplasmic tail (C‐tail) to demonstrate that the C‐tail is essential to regulate cell growth and motility. Therefore, the aim of our study was to delineate the respective role of the truncated Cx43 and the C‐tail in mediating Cx43‐dependent signaling. A truncated Cx43 expressing the channel part of the protein (TrCx43, amino acid 1–242) and a construct encompassing only the C‐tail from amino acid 243 (243Cx43) were transduced into LN18 human glioma cells. Our results showed that the ability of Cx43 to suppress growth was independent of GJIC as assessed by dye transfer, but was dependent on the presence of a rigid extracellular matrix. We further demonstrated that the C‐tail alone is sufficient to promote motility. Surprisingly, Cx43 is also able to increase migration in the absence of the C‐tail, suggesting the presence of at least two distinct signaling mechanisms utilized by Cx43 to affect motility. Finally, we used time‐lapse imaging to examine the behavior of migrating cells and it was apparent that the C‐tail was associated with a lamellipodia‐based migration not observed in either mock or TrCx43 expressing LN18 cells. Our study shows for the first time that a free C‐tail is sufficient to induce Cx43‐dependent changes in cell morphology and that Cx43 signaling is linked to the regulation of the actin cytoskeleton. J. Cell. Biochem. 110: 589–597, 2010. © 2010 Wiley‐Liss, Inc.
Keywords:Cx43  gap junctions  actin cytoskeleton  migration
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号