首页 | 本学科首页   官方微博 | 高级检索  
   检索      


EGF and its related growth factors mediate sodium transport in mpkCCDc14 cells via ErbB2 (neu/HER‐2) receptor
Authors:Vladislav Levchenko  Nadezhda N Zheleznova  Tengis S Pavlov  Alain Vandewalle  Patricia D Wilson  Alexander Staruschenko
Institution:1. Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin;2. Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin;3. INSERM, U773, Centre de Recherche Biomédicale Bichat‐Beaujon (CRB3);4. Université Paris 7—Denis Diderot, Paris, France;5. Department of Medicine, University College London, United Kingdom;6. Kidney Disease Center, Medical College of Wisconsin, Milwaukee, Wisconsin
Abstract:Amiloride‐sensitive sodium entry, via the epithelial sodium channel (ENaC), is the rate‐limiting step for Na+ absorption. Epidermal growth factor (EGF) is involved in the regulation of Na+ transport and ENaC activity. However it is still controversial exactly how EGF regulates ENaC and Na+ absorption. The aim of the present study was to characterize the EGF regulation of Na+ transport in cultured mouse renal collecting duct principal mpkCCDc14 cells, a highly differentiated cell line which retains many characteristics of the cortical collecting duct (CCD). EGF dose dependently regulates basal transepithelial Na+ transport in two phases: an acute phase (<4 h) and a chronic phase (>8 h). Similar effects were observed with TGF‐α, HB‐EGF, and amphiregulin which also belong to the EGF‐related peptide growth factor family. Inhibition of MEK1/2 by PD98059 or U0126 increased acute effects and disrupted chronic effects of EGF on Na+ reabsorption. Inhibition of PI3‐kinase with LY294002 abolished acute effect of EGF. As assessed by Western blotting, ErbB2 is the most predominant member of the ErbB family detected in mpkCCDc14 cells. Immunohistochemistry analysis revealed localization of ErbB2 in the CCD in Sprague–Dawley rat kidneys. Both acute and long‐term effects of EGF were abolished when cells were treated with tyrphostin AG‐825 and ErbB2 inhibitor II, chemically dissimilar selective inhibitors of the ErbB2 receptor. Thus, we conclude that EGF and its related growth factors are important for maintaining transepithelial Na+ transport and that EGF biphasically modulates sodium transport in mpkCCDc14 cells via the ErbB2 receptor. J. Cell. Physiol. 223: 252–259, 2010. © 2009 Wiley‐Liss, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号