首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Yeast dihydroxybutanone phosphate synthase,an enzyme of the riboflavin biosynthetic pathway,has a second unrelated function in expression of mitochondrial respiration
Authors:Jin Can  Barrientos Antoni  Tzagoloff Alexander
Institution:Department of Biological Sciences, Columbia University, New York, New York 10027, USA. spud@cubpet2.bio.columbia.edu
Abstract:aE280/U1 is a pet mutant of Saccharomyces cerevisiae partially deficient in cytochromes a, a3, and cytochrome b. The ability of this mutant to respire is restored by RIB3, a gene previously shown to code for 3,4-dihydroxy-2-butanone-4-phosphate synthase (DHBP synthase), an enzyme of the riboflavin biosynthetic pathway. The sequences of RIB3 from wild type and aE280/U1 indicated a single base change resulting in an A137T substitution. The alanine 137 is a conserved residue located in a cavity on the surface of the protein distant from the active site and from the subunit interaction domain involved in homodimer formation. The respiratory defect elicited by this mutation cannot be explained by a flavin insufficiency based on the following evidence: 1) growth of the aE280/U1 on respiratory substrates is not rescued by exogenous riboflavin; 2) the levels of flavin nucleotides are not significantly different in the mutant and wild type. We proposed that in addition to its known function in riboflavin synthesis, RIB3 also functions in expression of mitochondrial respiration. Restoration by riboflavin of growth of a rib3 deletion mutant on glucose but not glycerol/ethanol also supported this conclusion. An antibody against the N-terminal half of DHBP synthase was used to study its subcellular distribution. Most of the protein was localized in the cytosolic fraction, but a small fraction was detected in the mitochondrial intermembrane space.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号