首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences for the growth of cucumber under salt-stress conditions
Authors:E Gamalero  G Berta  N Massa  BR Glick  G Lingua
Institution: Universitàdel Piemonte Orientale 'Amedeo Avogadro', Dipartimento di Scienze dell'Ambiente e della Vita, Viale Teresa Michel 11, Alessandria, Italy;
 Department of Biology, University of Waterloo, Waterloo, ON, Canada
Abstract:Aims: After the determination of the toxic but nonlethal concentration of NaCl for cucumber, we examined the interaction between an ACC (1‐aminocyclopropane‐1‐carboxylate) deaminase producing bacterial strain and an arbuscular mycorrhizal fungus (AMF) and their effects on cucumber growth under salinity. Methods and Results: In the first experiment, cucumber seedlings were exposed to 0·1, 50, 100 or 200 mmol l?1 NaCl, and plant biomass and leaf area were measured. While seeds exposed to 200 mmol l?1 NaCl did not germinate, plant growth and leaf size were reduced by 50 or 100 mmol l?1 salt. The latter salt cancentration caused plant death in 1 month. In the second experiment, seeds were inoculated with the ACC deaminase‐producing strain Pseudomonas putida UW4 (AcdS+), its mutant unable to produce the enzyme (AcdS?), or the AMF Gigaspora rosea BEG9, individually or in combination and exposed to 75 mmol l?1 salt. Plant morphometric and root architectural parameters, mycorrhizal and bacterial colonization and the influence of each micro‐organism on the photosynthetic efficiency were evaluated. The AcdS+ strain or the AMF, inoculated alone, increased plant growth, affected root architecture and improved photosynthetic activity. Mycorrhizal colonization was inhibited by each bacterial strain. Conclusions: Salinity negatively affects cucumber growth and health, but root colonization by ACC deaminase‐producing bacteria or arbuscular mycorrhizal fungi can improve plant tolerance to such stressful condition. Significance and Impact of the Study: Arbuscular mycorrhizal fungus and bacterial ACC deaminase may ameliorate plant growth under stressful conditions. It was previously shown that, under optimal growth conditions, Ps. putida UW4 AcdS+ increases root colonization by Gi. rosea resulting in synergistic effects on cucumber growth. These results suggest that while in optimal conditions ACC deaminase is mainly involved in the bacteria/fungus interactions, while under stressful conditions this enzyme plays a role in plant/bacterium interactions. This finding is relevant from an ecological and an applicative point of view.
Keywords:1-aminocyclopropane-1-carboxylate deaminase  ethylene  mycorrhizal fungi  plant growth  salt stress
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号