首页 | 本学科首页   官方微博 | 高级检索  
   检索      


DNA sequence has an effect on the extent and kinds of alkylation of DNA by a potent carcinogen
Authors:W T Briscoe  L E Cotter
Abstract:A system has been developed to study the effects of base sequence (neighboring bases) upon the alkylation of guanine (G) and adenine (A) bases in DNA. The study was performed on the synthetic polydeoxyribonucleotides, poly(dG).poly(dC), poly(dG-dC).poly(dG-dC), poly(dA).poly(dT), poly(dA-dT).poly(dA-dT), poly(dA-dC).poly(dG-dT), poly(dA-dG).poly(dC-dT), as well as calf thymus DNA. Each polynucleotide was treated with N-3H]methyl-N-nitrosourea (MNU), depurinated, and the freed alkylpurines separated by HPLC and quantitated by liquid scintillation counting. The amounts of 3-methylguanine (3-MG), 7-MG, and O6-MG relative to guanine, and 3-methyladenine (3-MA) and 1-MA plus 7-MA relative to adenine, and also the O6-MG/7-MG ratios were highly reproducible for a given polynucleotide. Significant differences were found in the amounts of each of the methylpurines formed when compared among the six synthetic polynucleotides and DNA. This evidence is interpreted as an effect upon alkylation which is ultimately dependent upon the base sequence. These findings may have significance in defining the specificity of chemical carcinogens in terms of the susceptability to modification of nucleotide sequences such as those found in certain oncogenes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号