首页 | 本学科首页   官方微博 | 高级检索  
   检索      


In situ binding of a photo-affinity GTP analog to synaptic membrane G-proteins. Distribution of bound GTP analog reflects the status of adenylate cyclase
Authors:J H Gordon  M M Rasenick
Institution:Department of Physiology and Biophysics, University of Illinois, College of Medicine, Chicago 60680.
Abstract:Regulation of synaptic membrane adenylate cyclase is likely to involve interaction between neurotransmitter receptors, G-proteins and the adenylate cyclase catalytic unit as well as several other membrane proteins and lipids. Despite intensive study of this system, regulation of guanine nucleotide binding by the G-proteins which stimulate Gs] or inhibit Gi] adenylate cyclase has been examined only when those proteins have been purified and removed from the influence of the membrane environment. The hydrolysis-resistant photoaffinity GTP-analog, P3-(4-azidoanilido)-P1 5'-GTP (AAGTP) is able to bind specifically to the G-proteins in rat cerebral cortex synaptic membranes and, in this study, we have used this probe to examine the specificity and selectivity of guanine nucleotide binding to each G-protein without removing those proteins from the synaptic membrane. Marked differences were noted between guanine nucleotide binding data obtained with detergent-soluble G-proteins and data from this in situ approach. In these studies it was found that the affinity of the G-proteins binding AAGTP correlated well with the expression of adenylate cyclase activity, the affinity of both forms of Gs increasing under conditions favoring the stimulation of that enzyme.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号