首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Peroxisome proliferator-activated receptor gamma ligands inhibit retinoblastoma phosphorylation and G1--> S transition in vascular smooth muscle cells
Authors:Wakino S  Kintscher U  Kim S  Yin F  Hsueh W A  Law R E
Institution:Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, and the Molecular Biology Institute, UCLA, Los Angeles, California 90095, USA.
Abstract:Peroxisome proliferator-activated receptor gamma (PPARgamma) is a member of the nuclear receptor superfamily that is activated by binding certain fatty acids, eicosanoids, and insulin-sensitizing thiazolidinediones (TZD). The TZD troglitazone (TRO) inhibits vascular smooth muscle cell proliferation and migration both in vitro and in vivo. The precise mechanism of its antiproliferative activity, however, has not been elucidated. We report here that PPARgamma ligands inhibit rat aortic vascular smooth muscle cell proliferation by blocking the events critical for G(1) --> S progression. Flow cytometry demonstrated that both TRO and another TZD, rosiglitazone, prevented G(1) --> S progression induced by platelet-derived growth factor and insulin. Movement of cells from G(1) --> S was also inhibited by the non-TZD, natural PPARgamma ligand 15-deoxy-(12,14)Delta prostaglandin J(2) (15d-PGJ(2)), and the mitogen-activated protein kinase pathway inhibitor PD98059. Inhibition of G(1) --> S exit by these compounds was accompanied by a substantial blockade of retinoblastoma protein phosphorylation. TRO and rosiglitazone attenuated both the mitogen-induced degradation of p27(kip1) and the mitogenic induction of p21(cip1). 15d-PGJ(2) and PD98059 inhibited both the degradation of p27(kip1) and the induction of cyclin D1 in response to mitogens. These effects resulted in the inhibition of mitogenic stimulation of cyclin-dependent kinases activated by cyclins D1 and E. These data demonstrate that PPARgamma ligands are antiproliferative drugs that act by modulating cyclin-dependent kinase inhibitors; they may provide a new therapeutic approach for proliferative vascular diseases.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号