首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cardiac-specific norepinephrine mass transport and its relationship to left ventricular size and systolic performance
Authors:Grossman P Michael  Linares Oscar A  Supiano Mark A  Oral Hakan  Mehta Rajendra H  Starling Mark R
Institution:Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA.
Abstract:Objectives of this study were to develop a technique for quantifying cardiac-specific norepinephrine (NE) mass transport and determine whether cardiac NE kinetic modeling parameters were related to physiological variables of left ventricular (LV) size and systolic performance in nine patients with chronic mitral regurgitation. Biplane contrast cineventriculograms were used to determine LV size and ejection fraction (EF), micromanometer LV pressures and radionuclide LV volumes from a range of loading conditions to calculate LV end-systolic elastance, and (3)H]NE infusions with LV and coronary sinus sampling for (3)H]NE and endogenous NE during and after termination of infusions to model NE mass transport. Total NE release rate into cardiac interstitial fluid (M(IF)(R)) averaged 859 +/- 214 and NE released de novo into cardiac interstitial fluid (M(IF)(u,r,en)) averaged 546 +/- 174 pmol/min. Both M(IF)(R) and M(IF)(u,r,en)correlated directly with LV end-systolic volume (r = 0.84, P = 0.005; r = 0.86, P = 0.003); inversely with LV EFs (r = -0.75, P = 0.02; r = -0.81, P = 0.008); and inversely with LV end-systolic elastance values, optimally fit by a nonlinear function (r = 0.89, P = 0.04; r = 0.96, P = 0.01). We conclude that total and newly released NE into interstitial fluid of the heart, determined by regional mass transport kinetic model, are specific measures of regional cardiac-specific sympathetic nervous system activity and are strongly related to measures of LV size and systolic performance. These data support the concept that this new model of organ-specific NE kinetics has physiological relevance.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号