首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Expression, Purification, and Functional Characterization of the Serine Protease Inhibitor Neuroserpin Expressed in Drosophila S2 Cells
Authors:Rena M Hill  Stephen O Brennan  Nigel P Birch  
Institution:a Molecular Neuroendocrinology Laboratory, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand;b Molecular Pathology Laboratory, Department of Pathology, Christchurch School of Medicine, University of Otago, Christchurch, New Zealand
Abstract:Neuroserpin (NS) is a serine protease inhibitor (or serpin) that is widely expressed in the developing and adult nervous systems. It has been implicated in the regulation of proteases involved in processes such as synaptic plasticity, neuronal migration, and axogenesis. To aid in the characterization of this new serpin we have established a high-level expression system in Drosophila S2 cells and developed a purification strategy to obtain neuroserpin for functional studies. Suspension cultures of S2-NS cells secreted recombinant neuroserpin into the medium. High-level expression was maintained when the cells were switched to a nonselection serum-free medium for 3-4 days to facilitate protein purification. Recombinant neuroserpin was purified by sequential chromatography on Macroprep ceramic hydroxyapatite, Type I, POROS HQ20, Resource Q, and Superdex 75 HR 10/30 media. Two secreted forms of neuroserpin were observed with molecular weights of 49 and 50 kDa which may represent alternative glycosylation at three putative N-linked glycosylation sites. Amino acid sequence analysis indicated three NH2-terminal sequences. The major sequence was generated by cleavage at the Gly18-Ala19 bond consistent with removal of an 18-amino-acid signal peptide. Two further sequences were identified each with one fewer amino acids at the NH2-terminus. All three NH2-terminal sequences were also identified by mass spectrometric analysis of neuroserpin following trypsin digestion. Mass spectrometry also confirmed the protein had an intact carboxyl terminus while complex formation assays indicated the inhibitor was functionally active. In summary, Drosophila S2 cells offered a nonlytic stable expression system for the continual production of neuroserpin in high-density suspension cultures.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号