首页 | 本学科首页   官方微博 | 高级检索  
     


Simultaneous evolution of multiple dispersal components and kernel
Authors:Sudipta Tung  Abhishek Mishra  P. M. Shreenidhi  Mohammed Aamir Sadiq  Sripad Joshi  V. R. Shree Sruti  Sutirth Dey
Affiliation:1. Population Biology Laboratory, Biology Division, Indian Inst. of Science Education and Research‐Pune, Pune, Maharashtra 411 0081, India;2. Dept of Plant Science, McGill Univ., Ste. Anne de Bellevue, QC, Canada;3. http://orcid.org/0000‐0001‐9210‐3055
Abstract:Global climate is changing rapidly and is accompanied by large‐scale fragmentation and destruction of habitats. Since dispersal is the first line of defense for mobile organisms to cope with such adversities in their environment, it is important to understand the causes and consequences of evolution of dispersal. Although dispersal is a complex phenomenon involving multiple dispersal‐components like propensity (tendency to leave the natal patch) and ability (to travel long distances), the relationship between these traits is not always straight‐forward, it is not clear whether these traits can evolve simultaneously or not, and how their interactions affect the overall dispersal profile. To investigate these issues, we subjected four large (n ~ 2400) outbred populations of Drosophila melanogaster to artificial selection for increased dispersal, in a setup that mimicked increasing habitat fragmentation over 33 generations. The propensity and ability of the selected populations were significantly greater than the non‐selected controls and the difference persisted even in the absence of proximate drivers for dispersal. The dispersal kernel evolved to have significantly greater standard deviation and reduced values of skew and kurtosis, which ultimately translated into the evolution of a greater frequency of long‐distance dispersers (LDDs). We also found that although sex‐biased dispersal exists in D. melanogaster, its expression can vary depending on which dispersal component is being measured and the environmental condition under which dispersal takes place. Interestingly though, there was no difference between the two sexes in terms of dispersal evolution. We discuss possible reasons for why some of our results do not agree with previous laboratory and field studies. The rapid evolution of multiple components of dispersal and the kernel, expressed even in the absence of stress, indicates that dispersal evolution cannot be ignored while investigating eco‐evolutionary phenomena like speed of range expansion, disease spread, evolution of invasive species and destabilization of metapopulation dynamics.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号