首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Human ovarian cancer, lymphoma spleen, and bovine milk GlcNAc:beta1,4Gal/GalNAc transferases: two molecular species in ovarian tumor and induction of GalNAcbeta1,4Glc synthesis by alpha-lactalbumin
Authors:Chandrasekaran E V  Chawda R  Piskorz C  Locke R D  Ta A  Sharad G  Odunsi K  Lele S  Matta K L
Institution:Department of Molecular and Cellular Biophysics, Roswell Park Cancer Institute, Elm and Carton Streets, Buffalo, NY 14263, USA.
Abstract:Affinity Gel-UDP was utilized to purify GlcNAc:beta1,4Gal/GalNAc transferases (Ts) from human lymphoma spleen, ovarian tumor, and ovarian cancer sera. Mn(2+) was found to be an absolute requirement for activity. Two molecular species containing both beta1,4Gal/GalNAc-T activities were discernible when the purified ovarian tumor microsomal enzyme was subjected to Sephacryl S-100 HR column chromatography as well as native polyacylamide gel-electrophoresis. Acceptor specificity studies of the affinity-purified lymphoma spleen and ovarian tumor microsomal enzymes and the conventionally purified, as well as the cloned, bovine milk GlcNAc:beta1,4Gal-Ts using a number of synthetic acceptors showed that the beta(1,6)-linked GlcNAc moiety to alpha-GalNAc was the most efficient acceptor. As compared to the purified milk enzyme, the recombinant form exhibited sixfold GlcNAc:beta1,4 GalNAc-T activity and up to eightfold GlcNAc6SO3beta-:beta1,4Gal-T activity. Further, the recombinant enzyme catalyzed the transfer of GalNAc to the terminal beta-linked GlcNAc6SO3 moiety. Alpha-lactalbumin (alpha-LA) inhibited up to 85%, the transfer of Gal to the GlcNAc moiety linked either to Man or GlcNAc. On the contrary, alpha-LA had no significant influence on the transfer of GalNAc to the above acceptors. alpha-LA had no appreciable effect on the recombinant enzyme, except for the transfer of Gal or GalNAc to Glc. Both alpha- and beta-glucosides, as well as alpha-N-acetylglucosaminide, did not serve as acceptors.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号